

Microplastics in Environmental Setting: A Review on Sources, Exposure Routes and Potential Toxicities on Human Health

Nor Azura Sulong^{1*}, Noradila Mohamed¹, Fazni Susila Abd Ghani¹, Ahmad Hanafi Sulong²

¹*School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia*

²*School of Animal Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, 22200 Terengganu, Malaysia*

Received March 19, 2024, Accepted in revised form May 07, 2024

Available online June 28, 2024

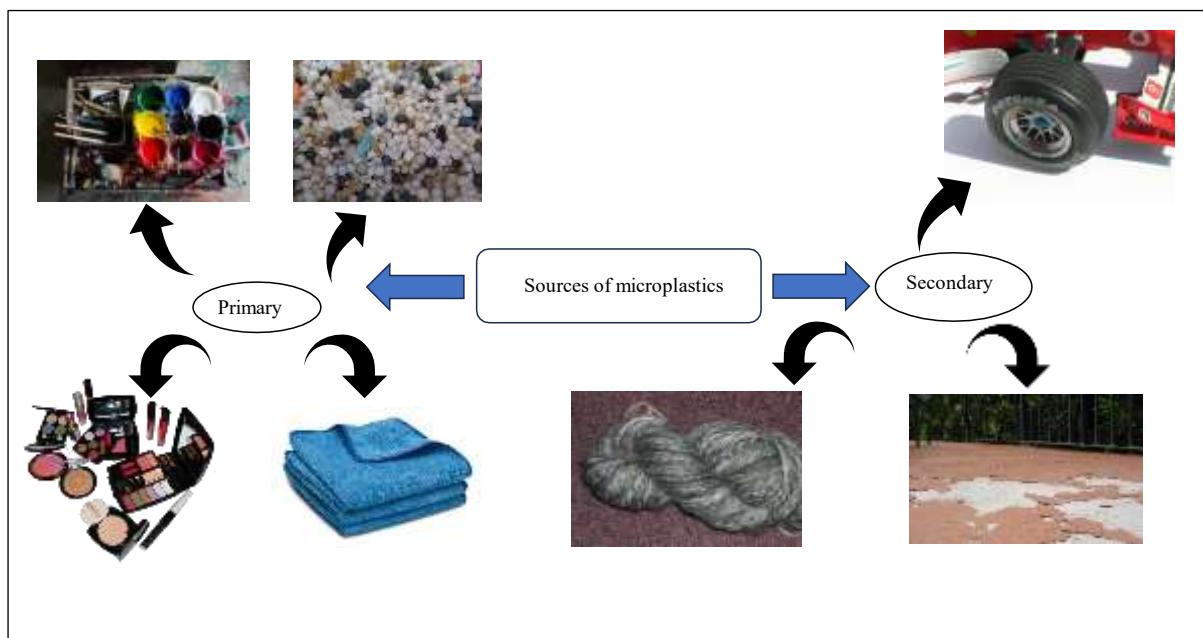
ABSTRACT. Microplastics are pervasive throughout various ecosystems, but the potential risk of exposure to humans remains uncertain. Microplastics are plastic particles measuring less than five millimeters, and they infiltrate ecosystems via soil, water, atmosphere and living organisms where they are potentially impacting human health. The sources, routes of exposure, and potential effects on human health are reviewed in the current paper. Microplastics are regularly identified in both environmental and human specimens. They can be found in roadside dust, indoor air, fresh and surface water, beverages, honey, sugar, and other dietary items. Microplastics can enter the human body through the skin, food, or inhalation and may have negative health impacts. A significant challenge in assessing the potential health risks posed by microplastics is the lack of data regarding human exposure. There is an urgent need for effective analytical instruments capable of sampling, isolating, detecting, quantifying, and characterizing microplastics. The objective of the paper is to summarize the literature on the sources, distribution, route of exposure and the potential toxicities of microplastics and to identify the research gap for the future work. We searched for hundreds of papers related to microplastics from 2013-2023. We then screened them for inclusion, evaluated the quality of the study, extracted the data and conducted the data analysis. We provide a summary of the harmful effects of microplastics on animals, organoids, and cell models used in experiments. Microplastics have been linked to immunotoxicity, neurotoxicity, metabolic disorders, and reproductive toxicity. Finally, we provide future perspectives on the prevalence, characterization, fate, and breakdown of microplastics as they are needed for gaining a comprehensive understanding of microplastics. This review provides a concise overview of the sources, pathways through which humans are exposed to microplastics and potential toxicity effects of microplastics.

Keywords: *Microplastics, Sources, Exposure routes, Toxicity*

INTRODUCTION

Plastics have a global presence, with the annual production of plastic products has experienced a substantial increase over the past approximately 65 years, resulting in the production of a staggering 6,300 million metric tons (Geyer et al., 2017). Polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) are the principal polymers that are commercially accessible (Cheung et al., 2018). Due to their affordability, adaptability, long-lasting properties and robustness, plastics find extensive application in diverse fields, including automotive, construction, machinery, healthcare, aerospace, packaging, and agriculture (Hu et al., 2019). During their use, plastics undergo processes like crushing, splitting, and degradation, leading to the formation of small fragments or particles.

*Corresponding author: Tel.: +603 55444476; fax: +603 55444562.
E-mail address: azurasulong@uitm.edu.my


Microplastics in Environmental Setting

Microplastics are tiny plastic fragments and particles that measure less than five millimeters in size. Meanwhile, nanoplastics are the term used for particles with a diameter smaller than 1 μm (Kasmuri et al., 2022; Li et al., 2021). Microplastics do, in fact, come in a variety of sizes, ranging from a few microns to a few millimeters. Microplastics can originate from various sources, and they can be categorized into two types: primary microplastics and secondary microplastics (Laskar & Kumar, 2019). Primary microplastics are tiny plastic particles that are intentionally produced and used in various products and applications (Wang et al., 2019). Primary microplastics are produced as tiny plastic particles or fibers for particular uses, in contrast to secondary microplastics, which are the byproduct of the breakdown of larger plastic objects. The presence of primary microplastics in the environment can have adverse effects on ecosystems and wildlife. Some common sources and examples of primary microplastics are microbeads (added to personal care and cosmetic products), microfibers (shed from synthetic textiles like polyester and nylon when they are washed), pellets or nurdles (raw material in the manufacturing of various plastic products) and powdered plastics (additives or fillers in products like paint, coatings, and automotive parts) (An et al., 2020; Gouin et al., 2015). Secondary microplastics are tiny plastic particles that result from the breakdown of larger plastic items, either through physical processes like weathering, fragmentation, and UV radiation or through chemical processes like degradation due to exposure to environmental conditions (Hale et al., 2020). These secondary microplastics are distinct from primary microplastics, which are manufactured as small plastic particles for specific purposes, such as microbeads in cosmetics or nurdles (pre-production plastic pellets). Secondary microplastics can originate from various sources such as tire wear particles, paint and coating erosion, microplastic fragmentation and synthetic fiber shedding (Hanun et al., 2021; Lusher et al., 2017). Figure 1 shows the sources of microplastics from primary and secondary types.

Microplastics can be distributed throughout various environmental compartments, including water bodies, soil, air, wildlife and organisms. Microplastics are commonly found in oceans, seas, rivers, lakes, and even in freshwater sources (Andrade, 2017; Peng et al., 2020). They can be transported by water currents and can accumulate in aquatic ecosystems, posing risks to marine life (Auta et al., 2017). Microplastics can also be found in soil, either directly from the application of plastic-based agricultural products or indirectly as they settle from the atmosphere (Campanale et al., 2022; Koutnik et al., 2021). Microplastics are also susceptible to entering both soil and water through processes like wind dispersal, rainfall, surface runoff, and atmospheric deposition where their environmental impact is extensive and significant (Bigalke et al., 2022; Kallenbach et al., 2022; Sa'adu & Farsang, 2023). Microplastics can become airborne and be transported through the atmosphere. They can settle in various terrestrial and aquatic environments, including urban areas (Bigalke et al., 2022; Sridharan et al., 2021). Furthermore, microplastics have been discovered in a wide range of organisms, from small zooplankton to larger marine animals, and even in the tissues of terrestrial animals (Issac & Kandasubramanian, 2021). This can occur through ingestion or through the transfer of microplastics up the food chain (Botterell et al., 2019).

Because of the possible effects on the ecosystem and human health, the spread of microplastics in the environment is a developing issue. The field of toxicological research on microplastics is growing quickly. According to experimental results, exposure to microplastics causes a wide range of detrimental consequences, including neurotoxicity, immune system reactions, metabolic disruptions, oxidative stress, and toxicity to the reproductive and developmental systems

(Li et al., 2023; Sangkham et al., 2022). However, due to limitations in existing technological methodologies, comprehensive study is lacking in understanding the absorption, metabolism, migration, transformation, and accumulation of microplastics. Thorough research is missing in understanding the absorption, metabolism, migration, transformation, and accumulation of microplastics due to limitations in current technical approaches. This review provides a concise overview of the sources, pathways through which humans are exposed to microplastics, health hazards and toxicity effects of microplastics.

Figure 1. Sources of microplastics from primary and secondary types

SOURCES OF HUMAN EXPOSURE TO MICROPLASTICS

Table 1 compiles data from recent studies, summarizing the documented levels of microplastics found in diverse human exposure sources, including roadside dust, indoor air, fresh and surface water, beverages, honey, sugar, and other dietary items. In research conducted by Alam et al. (2019), microplastic distribution in surface water and sediment river around slum and industrial area were discovered. Analysis of river water samples revealed that the mean microplastic concentration, along with its standard deviation, stood at 5.85 ± 3.28 particles per liter of river water. Meanwhile, the average concentration of microplastics in sediment samples was 3.03 ± 1.59 microplastic particles per 100 g of dry sediment. A study by Yuan et al. (2019) indicated that the presence of microplastics in various environmental zones within Poyang Lake, which is China's largest freshwater lake. The findings revealed that microplastic abundance ranged from 5 to 34 items per liter in surface waters, 54 to 506 items per kilogram in sediments, and 0 to 18 items per individual in wild crucians (*Carassius auratus*). The spatial distribution of microplastics in Poyang Lake exhibited significant heterogeneity, with the greatest abundance observed in the central area of the lake for surface waters and in the northern region for sediments. Meanwhile, a study conducted in Lake Hovsgol, Mongolia by Free et al. (2014) indicated that there was pelagic microplastic pollution that came from

Microplastics in Environmental Setting

consumer goods.

Research findings have documented the existence of microplastic particles in indoor air within urban environments and further enhanced by the detection of microplastics in street dust. The rise in the annual consumption of plastics for diverse applications has resulted in an uptick in the presence of microplastic particles in various settings, including indoor environments. High concentration of microplastics is present in indoor environment of buildings with different applications in Bushehr and Shiraz cities, Iran which pose high exposure risk to different age groups (Kashfi et al., 2022). Furthermore, microplastics were detected in the atmosphere, with indoor air (3.3 ± 2.9 fibers and 12.6 ± 8.0 fragments m^{-3} ; mean ± 1 SD) containing double the amount found in outdoor air (0.6 ± 0.6 fibers and 5.6 ± 3.2 fragments m^{-3}) (Gaston et al., 2020). Indoor environments can accumulate microplastics from a variety of sources such as synthetic fabrics shedding fibers, microbeads in personal care products, dust from outdoor microplastic pollution being tracked inside, and even from the degradation of larger plastic items within the home. Plus, indoor air circulation can sometimes trap microplastics, leading to higher concentrations compared to outdoor environments where they can disperse more readily (Yang et al., 2021). Several other studies also indicated the abundance of microplastic in indoor dust (Abbasi et al., 2022; Aslam et al., 2022; Bahrina et al., 2020; Kacprzak & Tijing, 2022; Nematollahi et al., 2022; Peng et al., 2023; Zhu et al., 2022). Microplastic pollution in the road dust of Chennai was observed by Patchaiyappan et al. (2021) where the mean concentration of microplastic was calculated to be 227.94 ± 91.37 per one hundred grams of street dust sample which 92.46% of them were fragments. According to research done on roadside dust in rural and urban Victoria, Australia, the mean concentration of microplastic changed between two different seasons between 20.6 and 529.3 items per kilogram (based on dry weight), mostly made up of fibers and objects smaller than one millimeter. Cotton and cellulose were the most common non-plastic materials, making up 27%, while polyester and polypropylene were the most common polymer categories, making up 26% (Su et al., 2020).

The increasing accumulation of microplastics in the environment has raised substantial concerns regarding human exposure to these particles through food consumption. Microplastic presence was identified in nine out of eleven samples taken from commercial marine fish species in Malaysia. Among the detected plastic polymers, polyethylene is the most prevalent (Karbalaie et al., 2019). A study about microplastic contamination of packaged meat indicated that food products contain XPS microplastics (MP-XPS) at concentrations varying between 4.0 and 18.7 MP-XPS per kilogram of packaged meat. Based on analysis, it appears that the XPS trays are most likely the source of these microplastics. These particles can be cooked before eating because they are difficult to remove with common washing techniques. Nevertheless, it remains uncertain, based on current scientific literature, whether there exists a potential human health risk associated with the ingestion of MP-XPS (Kedzierski et al., 2020). The study of abundance of microplastic in mostly consumed fruits and vegetables from Turkey by Aydin et al. (2023) suggested that a collective count of 210 particles (with an average of 2.9 ± 1.6 particles per gram) was identified across all the samples. The samples are cucumber (*Cucumis sativus*), potatoes (*Solanum tuberosum*), tomato (*Solanum lycopersicum*), pear (*Pyrus communis*), apple (*Malus domestica*) and onion (*Allium cepa*). The investigation of microparticles in five brands of commercial sugars from different supermarkets in Dhaka, Bangladesh revealed that microplastics-like

particles were identified in all analyzed samples (Afrin et al., 2022). On average, there were 343.7 ± 32.08 plastic particles per kilogram of sugar, with a notable trend indicating a higher occurrence of microplastics measuring less than 300 μm . In general, microfibers were the most common, and the primary colors observed among microplastics were black, pink, blue, and brown.

Table 1. Sources, chemical compositions, sizes and locations of commonly found microplastics

Sources	Location	Abundance	Size	References
Surface water	Ciwalengke River, Indonesia	5.85 ± 3.28 items/ L	50–100 μm	(Alam et al., 2019)
Freshwater	Lake Hovsgol, Mongolia	20,264 particles km^{-2}	0.333– 0.999 mm	(Free et al., 2014)
Coastal sediment	Macao	259 and 1,743 items/L	26 μm –11 mm	(Bashir et al., 2021)
Marine fish	Malaysian market	-	2600 ± 7.0 μm	(Karbalaei et al., 2019)
Street dust	India	$227.94 \pm 91.37/100$ g	-	(Patchaiyappan et al., 2021)
Atmospheric fallout	Vietnam	1801.2 particles m^{-2}	-	(Thuong et al., 2020)
Roadside dust	Australia	20.6–529.3 items kg^{-1}	-	(Su et al., 2020)
Indoor air	Shiraz, Iran	90.8 items/mg	100–1000 μm	(Kashfi et al., 2022)
Indoor air	California, USA	0.4 ± 20.6 n/ m^3	641–810.7 μm	(Gaston et al., 2020)
Plastic packaging	Australia	0.46–250 MPs/cm	-	(Sobhani et al., 2020)
Packaged meat	France	0–18.7 MP-XPS/kg	300–450 μm	(Kedzierski et al., 2020)
Fruit and vegetable	Turkey	3.63 ± 1.39 particle g^{-1}	-	(Aydin et al., 2023)
Sugar	Dhaka, Bangladesh	343.7 ± 32.08 particle kg^{-1}	-	(Afrin et al., 2022)
Chicken meat	Pakistan	7.8 ± 12.1 MPs/crop	-	(Bilal et al., 2023)
Foodplain soils	German	0 - 55.5 mg kg^{-1}	-	(Weber et al., 2022)

ROUTE OF EXPOSURE TO MICROPLASTIC FOR HUMAN

Since microplastics are widely found in the environment and have been shown to have harmful effects, they pose a risk to human health. Understanding the potential pathways for human exposure to microplastics is critical. Common avenues of exposure include ingestion, inhalation, and skin contact (Yuan et al., 2022). Figure 2 shows the exposure routes of microplastics to get into the human body via inhalation, ingestion and dermal.

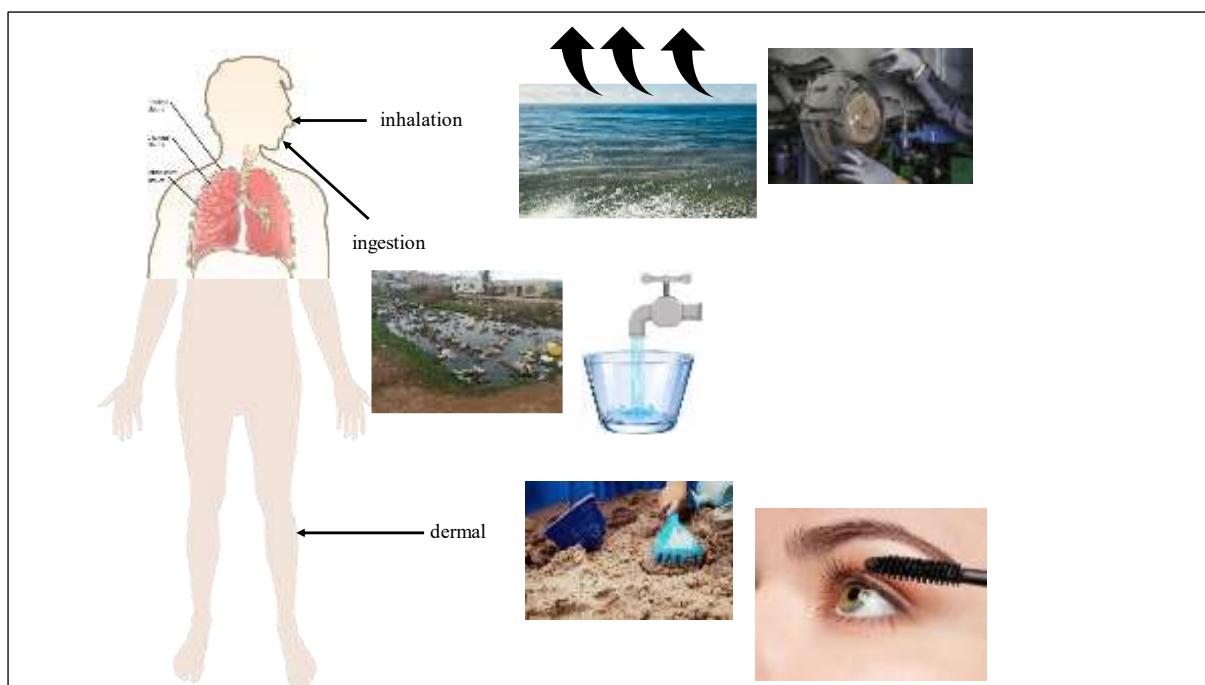
INGESTION

Microplastics have the potential to contaminate drinking water, build up within the food chain, and emit harmful chemicals that could be associated with health issues, including specific forms of cancer. Out of all the ways of exposure, the consumption of microplastics was considered the primary pathway (Sun & Wang, 2023). Because of the high concentration of microplastics in the ocean (reaching up to 102,000 particles per cubic meter), seafood has been identified as a significant source of microplastic ingestion (Rahman et al., 2021). Despite a recent report from the World Health Organization (WHO) that did not find conclusive evidence of harmful effects caused by microplastics in drinking water, the long-term consequences of continuous exposure to tap water on human health required more attention (Praveena et al., 2022). Drinking water is regarded as a potential pathway for the introduction of microplastics into the human system, as indicated by Danopoulos et al. (2020). The confirmation of the existence of microplastics in human stool samples has been established recently (Schwabl et al., 2019).

Currently, the heightened focus on the potential risks posed by microplastics to human health has been driven by their widespread presence in various aspects of the human environment, including items like honey, milk, beer, seafood, table salt, drinking water, and even the air (Karami et al., 2017; Kutralam-Muniasamy et al., 2020; Li et al., 2018; Zhang et al., 2020a). Microplastics could have been extensively dispersed in soil, particularly within agricultural environments (Rillig & Lehmann, 2020). This is particularly concerning when they possess a negative charge, as they have the potential to infiltrate the plant's water transport system, subsequently migrating to its roots, stems, leaves, and ultimately its fruits (Schwabl et al., 2019). Food contamination may result from the entry of microplastics into agricultural systems through sewage sludge, compost, and plastic mulching, which may increase the risk of human exposure to these pollutants (Li et al., 2023). Another way gastrointestinal exposure to microplastics occurs is through the ingestion of dust, particularly when children put dirty toys and hands in their mouths (Ljung et al., 2006; Q. Zhang et al., 2020b).

INHALATION

Microplastics can become suspended in the atmosphere through mechanical processes, although it is not their primary source in the environment. The areas with high concentrations of microplastics in marine ecosystems serve as significant potential reservoirs of microplastics that can become aerosolized via wind or wave activity, similar to the formation of sea spray aerosols (Allen et al., 2020; Sebille et al., 2016). Owing to their reduced density and their upward movement facilitated by gas bubbles, non-soluble microplastics tend to aggregate in the vicinity of the mixed


layer's surface. As a result, these particles are more easily transported into sea spray generated by wind or bubbles (Allen et al., 2020). Vehicle tires, brakes, and road surfaces contain plastic components that can undergo wear and tear and produce microplastics, subsequently released into the environment (Furuseth & Rødland, 2020; Mattsson et al., 2023; Napper & Abbott, 2020; Vogelsang et al., 2019). Of greater significance, the mechanical actions of vehicle tire rotation, the braking procedure, and the high turbulence created in the wake of vehicles provide these roadside plastics with enough mechanical energy to surpass inertial or cohesive forces, leading to their re-suspension into the atmosphere (Brahney et al., 2021). In human lungs, microplastic fibers that range from 8.12 to 16.8 μm and particles smaller than 5.5 μm are mostly made of PE and PP materials (Amato-Lourenço et al., 2021). It is noteworthy that the microplastics in lung tissues are smaller size than those in the environment. This underscores the possibility of human exposure to microplastics through inhalation, highlighting the need for increased vigilance regarding potential adverse effects on the human body (Li et al., 2023).

Recent studies have suggested that the uptake of microplastics through inhalation may surpass their uptake through dietary consumption (Cox et al., 2019; Zhang et al., 2020a; Zhu et al., 2021). One *in vitro* research, for example, showed that polyvinyl chloride (PVC) displayed a low level of cytotoxicity in human pulmonary cells, but human alveolar cells could absorb polystyrene (PS) nanoparticles, which caused severe inflammation and death (Xu et al., 2019). The fact that airborne microplastics may be absorbed into the respiratory system and may cause buildup, irritation, and blockage was further confirmed by research on animals (Fournier et al., 2020; Tiotiu et al., 2020; Wang et al., 2016). Furthermore, these particles have the ability to go from the mother's lungs, cross the placenta, and enter the fetal tissue, which may lead to a smaller fetus and slower growth (Wang et al., 2016). However, the actual risk posed by exposure to airborne microplastics to human health remains unclear. Accurately assessing the exposure of the respiratory tract to microplastics in humans is crucial before investigating the dose-response connection between inhalation exposure to microplastics and detrimental health consequences (Abbasi et al., 2019; Alimba & Faggio, 2019; Auta et al., 2017; Dris et al., 2017; Zhang et al., 2020b).

DERMAL

Despite the widespread belief that microplastics cannot pass through the skin barrier, their ability to stick to the skin's surface can nonetheless raise the risk of exposure (Prata, 2018; Schneider et al., 2009). For example, using consumer goods that contain microplastics—like cleansers and face creams—can increase the chance of being exposed to PE (Hernandez et al., 2017). Furthermore, when mobile phone covers intended for protection are used, they may produce microplastics that end up in users' hands. When kids play or crawl, they could come into touch with microplastics that are prevalent on the ground. Certain popular plastic additives, like triclosan (TCS), bisphenols (BPs), brominated flame retardants (BFRs), and phthalates, have the potential to be absorbed by the skin after dermal exposure to microplastics (Wu et al., 2022).

Micoplastics in Environmental Setting

Figure 2. Route of exposure of microplastics to human body

POTENTIAL TOXICITY OF MICROPLASTICS ON HUMAN HEALTH

Significant concerns have arisen regarding microplastics toxicity on human health because they have been extensively identified in different human tissues and they have the ability to move around inside the human body. In order to evaluate the possible negative impact of microplastics on human health, human-derived cell lines and laboratory rats have been frequently used as experimental models (Sun & Wang, 2023). The occurrence of toxic effects from microplastics is a multifaceted process influenced by numerous factors, such as their physical and chemical characteristics, duration of exposure, additives and more (Niu et al., 2023). Microplastics not only possess inherent toxicity but also serve as vehicles for various pollutants to infiltrate biological tissues and organs (Li et al., 2023). While microplastics pose their own set of challenges, it's worth noting that the organic contaminants adhering to microplastics can also present issue (Wang et al., 2017). Recent research on microplastic toxicity has started to address the concept of combined toxicity with other substances (Park & Park, 2021). Figure 3 summarizes the potential toxicities of microplastics based on human and animal experiment.

TOXIC EFFECTS IN HUMAN EXPERIMENTS

The most recent development in *in vitro* modeling is represented by human organoids, which have become unique platforms for evaluating exposure to newly discovered pollutants such as microplastics. In contrast to cell cultures and animal models, human organoids offer a more accurate reflection of the potential harm microplastics can pose to the human body. A study by Winkler et al. (2022) suggested that human airway organoids are a suitable model for testing effects of airborne pollutants although their utilization for assessing the biological effects linked to exposure to microplastics has been overlooked until this point. They investigated assessment of microplastic fibers (MPFs)

released from a household dryer's exhaust filter where they observed a notable decrease in the expression of the SCGB1A1 gene, which is associated with club cell functionality. Furthermore, cell growth exhibited a distinct polarization along the fibers. The MPFs did not induce significant inflammation or oxidative stress; however, they became enveloped by a cellular layer, leading to their incorporation into the organoid structure. This phenomenon could have potential long-term implications for lung epithelial cells during the repair process.

An investigation conducted by Hua et al. (2022) revealed that short-term exposure to microplastics lead to an increase in cell proliferation and elevated gene expression levels of Nestin, PAX6, ATF4, HOXB4, and SOD2. However, when exposed to microplastics for an extended duration, they noticed a decline in cell viability. Moreover, differences in the quantity and size of polystyrene microplastics (PS-MPs) affected the expression of genes linked to DNA damage and the formation of brain tissue patterns. Notably, as compared to the untreated control group, the PS-MP-treated conditions showed lower expression of the genes for β -tubulin III, Nestin, and TBR1/TBR2. The findings from this research indicate that exposure to PS-MPs can have detrimental effects on the development of tissue that resembles the embryonic brain in forebrain cerebral spheroids, and these effects appear to be dependent on the size and concentration of the microplastics. This study holds significance in the evaluation of environmental factors contributing to neurotoxicity and degenerative processes in humans.

An experiment conducted by Hou et al. (2022) involved human intestinal organoids exposed to polystyrene nanoplastics (PS-NPs). The measuring approximately 50 nm in size, at concentrations of 10 and 100 μ g/mL. The study shows that these PS-NPs accumulate differently in different types of intestinal organoids' cells, which causes apoptosis and an inflammatory reaction. Furthermore, our results demonstrate that co-exposure with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, can effectively reduce the accumulation of PS-NPs in secretory cells. This demonstrates how crucial active endocytosis is to enterocyte cells' absorption of PS-NPs. Other study conducted by Cheng et al. (2023) made use of liver organoids (LOs), a novel 3D in vitro model made from human pluripotent stem cells. They employed this alternative model to the human liver. The aim was to investigate the adverse biological effects of 1 μ m polystyrene-MP (PS-MP) microbeads using a dynamic exposure method. It was discovered that PS-MP increased hepatic CYP2E1 and HNF4A expression. These findings prompted the identification of plausible adverse outcome pathways (AOPs) connected to PS-MP, indicating possible dangers for cancer, fibrosis, and liver steatosis.

TOXICITY EFFECTS ON LABORATORY RODENTS

Immunotoxicity

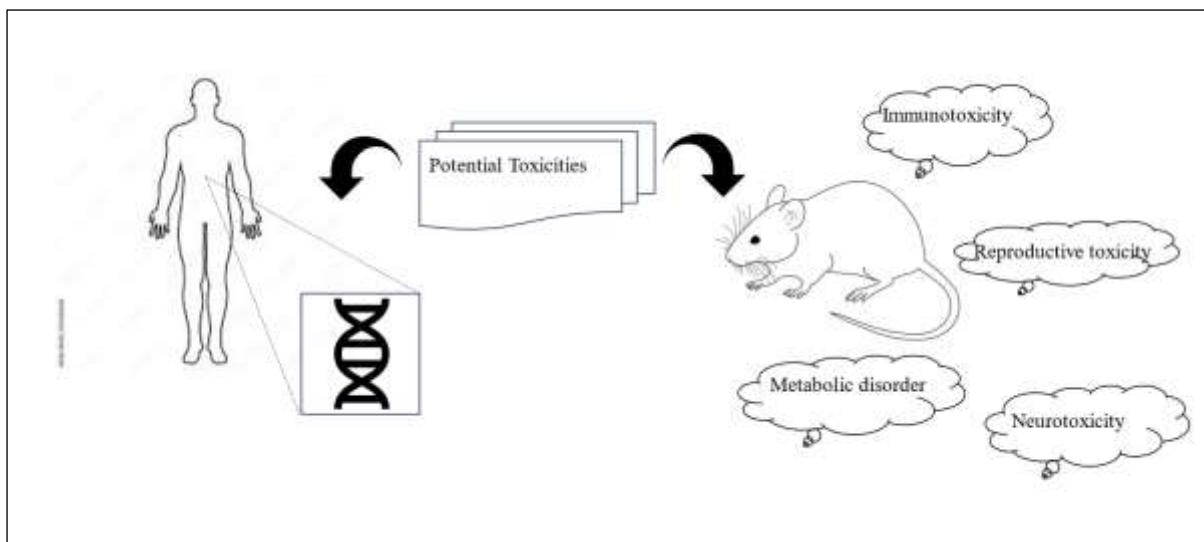
Microplastics may trigger the immune system of the body. Microplastics have the capability to infiltrate lymphatic vessels, potentially crossing cell membranes, thereby posing a threat to the lymphatic and circulatory systems. They may accumulate in secondary organs, adversely affecting the immune system and overall cellular health (Yuan et al., 2023). The purpose of the study was to determine whether exposure to different PE-MP doses (1, 10, 100, and 1000 μ g/mL) in adult zebrafish (*Danio rerio*) would disrupt the intestinal microbiota for a duration of 7 days, could

Microplastics in Environmental Setting

potentially trigger the activation of the intestinal immune network. In summary, by altering the predominant intestinal microbiota's phylum-level makeup, PE-MPs increase the risk of infection within the intestinal mucosa. Mucosal immunoglobulins are produced as a result of the intestinal immune network pathway being activated by exposure to PE-MPs., notably at concentrations of 100 or 1000 $\mu\text{g}/\text{mL}$ over a 7-day period (Yuan et al., 2023).

Researchers looked at the less-than-fatal consequences of microplastic particles and cadmium chloride (CdCl_2) on common carp (*Cyprinus carpio*). The findings of this study suggest that fish are toxically affected by both separate exposure to Cd and microplastics, resulting in alterations to their metabolic and immunological markers. Furthermore, when Cd and microplastics are combined, these alterations are exacerbated, suggesting synergistic effects that enhance the toxicity of Cd, and vice versa (Banaee et al., 2019). Airborne microplastics may also impact the digestive tract and immune system. It is known that the smallest particles among airborne contaminants, specifically those in the inhalable fraction, are absorbed through the pulmonary epithelium (Asgharian et al., 2001). These particles enter the systemic circulation and can influence the immune response along the gut-lung axis (Enaud et al., 2020). Therefore, depending on their size, both ingested and inhaled plastics can interact with intestinal tissues, enter the bloodstream, and potentially disrupt the immune system's functioning (Tang et al., 2020).

Reproductive toxicity


The effect of microplastics on reproduction through ingestion pathways, such as intake of tainted food and drink sources, was another major area of concern. These particles can infiltrate the body primarily through ingestion, inhalation, and contact with the skin, selectively affecting the reproductive system in a manner that depends on their size, disrupting both germ cell and other somatic cell development (Hong et al., 2023). Exposure to microplastics resulted in reproductive degradation in male mice, characterized by reduced testosterone levels, a decrease in the quantity and motility of viable sperm, as well as an increase in deformities, atrophy, and apoptosis of sperm cells (Chen et al., 2017). In a study by Jin et al. (2021), it is revealed that PS-MPs have toxic effects on the male reproductive system in mice. The sperm quality and testosterone levels in mice exhibited a noticeable decline following a 28-day exposure to 0.5 μm , 4 μm , and 10 μm PS-MPs. Moreover, PS-MPs damaged the blood-testis barrier and caused inflammation in the testicles. According to recent study, female infertility may be influenced by microplastic exposure, which has been shown to have deleterious effects on the ovaries. These findings offer fresh perspectives on the toxicity of microplastics concerning female reproductive health (Hou et al., 2021). An experiment conducted by Xie et al. (2020) suggested that exposure to microplastics (micro-PS) led to a substantial reduction in both the quantity and mobility of sperm, as well as a notable increase in sperm deformity rates. Furthermore, a reduction in the activity of enzymes linked to sperm metabolism, specifically lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH), was noted in the group exposed to microplastics. Additionally, there was a drop in blood testosterone levels.

Neurotoxicity

Research into the neurotoxicity of microplastics was relatively nascent, although there were some investigations concentrating on their impact on the brain. In experiments where microplastics were administered through a gastric tube, mice exhibited decreased locomotor activity, which was correlated with heightened anxiety and behavioral deficits (da Costa Araújo & Malafaia, 2021). Microplastics also exhibit toxicity towards neural development. The most frequently reported neurotoxic effect following exposure to microplastics is the inhibition of acetylcholinesterase (AchE) activity (Prüst et al., 2020). Microplastics induced neurotoxicity by inhibiting acetylcholinesterase (AChE), increasing lipid oxidation (LPO) in the brain and muscle, and altering the activities of energy-related enzymes such as lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) (Barboza et al., 2018). A study carried out by Yang et al. (2020) suggested that at elevated concentrations, microplastics had the potential to trigger oxidative stress, disrupt the integrity of the intestine, liver, and gill tissues, elevate heart rate, and impede the growth and swimming speed of the goldfish larvae. It is discovered that nanoplastistics (nMPs) were capable of infiltrating the muscle tissue by passing through the larvae's epidermis. This infiltration led to muscle tissue damage, nerve fiber disruption, the inhibition of acetylcholinase (AchE) activity, and exerted more pronounced adverse effects on larval mobility compared to microplastics (mMPs). Exposure to PS-MPs has the potential to result in impairments in learning and memory, as well as the induction of neurotoxic effects in mice. These findings carry significant implications for the general public concerning the possible hazards associated with microplastics (Jin et al., 2022).

Metabolic disorder

A research conducted by Kang et al. (2021) investigated how nanoplastics and microplastics impact the oxidative status and gut microbiota of the marine medaka *Oryzias melastigma*. The exposure to microplastics exhibited signs of intestinal damage, such as an elevated mucus ratio, along with notable modifications in the gut microbiota. Specifically, microplastics led to more substantial changes in the composition of microbiota, affecting both phylum and genus levels (Kang et al., 2021). A study carried out by Jin et al. (2019) revealed that the presence of polystyrene microplastics in the mice's gastrointestinal tracts, and their presence was associated with a decrease in intestinal mucus secretion and the impairment of intestinal barrier function. They suggested that polystyrene microplastics were responsible for metabolic disruptions and triggered imbalances in gut microbiota, dysfunction of the intestinal barrier, and metabolic disorders in mice. In a research on microplastics where five types of microplastics were employed, including polystyrene, polyethylene terephthalate, polyethylene, polyvinyl chloride, and poly(lactic-co-glycolic acid) (at a concentration of 80 mg/L in the small intestine), it is revealed that microplastics were markedly inhibited lipid digestion within the in vitro gastrointestinal system (Tan et al., 2020).

Figure 3. Potential toxicities posed by microplastics via human and animal experiment

CONCLUSIONS AND FUTURE PERSPECTIVES

Since microplastics are extensively dispersed throughout the environment, human exposure to them is unavoidable. Our review summarizes the current progress of the study of microplastic pollution, including occurrence, distribution, and potential toxicities on human health of microplastics. Since microplastics tend to collect in a variety of bodily tissues, it is crucial to look into any potential negative impacts on human health. Numerous studies using human-derived cells and lab animals have been conducted to identify the toxicity targets and fundamental processes of microplastics. In order to enhance our comprehension of potential harm to humans, the following suggestions for experimental designs are put forward.

This study reported abundance of sources of microplastics from different environmental settings. Additional investigation into the prevalence, characterization, fate, and breakdown of microplastics is needed for gaining a comprehensive understanding of and addressing the impacts of microplastics effectively. Other suggested research is to study the origins and destinations of plastics, the compartments they affect, and the mechanism of their transportation is essential. By possessing suitable analytical tools, we can enhance our understanding of where microplastics come from, the routes they follow, and where they accumulate in terrestrial, aquatic, and atmospheric settings. Any estimations made, whether they pertain to specific layers, size categories, polymer or forms (like pellets, fragments, or fibers) should be qualified to prevent any potential confusion.

The potential toxicities on human health of microplastics is being discovered in this review. To fully comprehend the cellular and molecular mechanisms behind microplastic toxicity and the ensuing health problems, further study is, nonetheless, desperately needed. Microplastics and a number of chemicals associated with plastics are substances that cause obesity. Further investigation is essential to elucidate the intricacies of these mechanisms and explore potential strategies for mitigating their effects. Research on critical technologies is essential for accurate microplastic detection, thorough characterisation at various sizes, and accurate quantitative and dynamic tracking of microplastics.

within living things. Because current analytical methods can only identify microplastics at the micron scale, it is difficult to evaluate nanoplastics, which are smaller microplastics that may be more harmful. The substantial variation in environmentally significant microplastics could complicate the interpretation of toxicological studies. Consequently, employing appropriate methods for identification and categorization would aid in the examination of the crucial factors of microplastics that influence their toxicity outcomes. Furthermore, a prolonged epidemiological investigation is necessary for a specific human population characterized as being highly susceptible to concurrent exposure to both microplastics and conventional pollutants.

ACKNOWLEDGEMENTS

The authors would like to thank the staffs of Department of Chemistry and Environment, Faculty of Applied Science UiTM Shah Alam for their technical expertise and administrative assistance. This project would not have been possible without the generous emotional support from them. We would also like to acknowledge the Faculty of Applied Science UiTM Shah Alam who generously give financial support for this project.

AUTHOR CONTRIBUTIONS

Nor Azura Sulong is responsible for research idea and write the original draft. **Fazni Susila Abdul Ghani** is responsible for editing, checking language and grammar. **Noradila Binti Mohamed** is responsible for checking the content of the introduction and conclusion. **Ahmad Hanafi Bin Sulong** is responsible for data analysis and curation.

FUNDINGS

This research did not receive any financial funding.

COMPETING INTEREST

The authors declare that there are no competing interests.

COMPLIANCE OF ETHICAL STANDARDS

Not applicable.

SUPPLEMENTARY MATERIALS

Not applicable.

REFERENCES

Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F. J., Dominguez, A. O., & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. *Environmental Pollution*, 244, 153-164. <https://doi.org/10.1016/j.envpol.2018.10.039>

Abbasi, S., Turner, A., Sharifi, R., Nematollahi, M. J., Keshavarzifard, M., & Moghtaderi, T. (2022). Microplastics in the school classrooms of Shiraz, Iran. *Building and Environment*, 207, 108562.

Microplastics in Environmental Setting

Afrin, S., Rahman, M. M., Hossain, M. N., Uddin, M. K., & Malafaia, G. (2022). Are there plastic particles in my sugar? A pioneering study on the characterization of microplastics in commercial sugars and risk assessment. *Sci Total Environ*, 837, 155849. <https://doi.org/10.1016/j.scitotenv.2022.155849>

Alam, F. C., Sembiring, E., Muntalif, B. S., & Suendo, V. (2019). Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). *Chemosphere*, 224, 637-645. <https://doi.org/10.1016/j.chemosphere.2019.02.188>

Alimba, C. G., & Faggio, C. (2019). Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. *Environmental Toxicology and Pharmacology*, 68, 61-74. <https://doi.org/10.1016/j.etap.2019.03.001>

Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V. R., & Sonke, J. E. (2020). Examination of the ocean as a source for atmospheric microplastics. *PLOS ONE*, 15(5), e0232746. <https://doi.org/10.1371/journal.pone.0232746>

Amato-Lourenço, L. F., Carvalho-Oliveira, R., Júnior, G. R., dos Santos Galvão, L., Ando, R. A., & Mauad, T. (2021). Presence of airborne microplastics in human lung tissue. *Journal of Hazardous Materials*, 416, 126124. <https://doi.org/10.1016/j.jhazmat.2021.126124>

An, L., Liu, Q., Deng, Y., Wu, W., Gao, Y., & Ling, W. (2020). Sources of Microplastic in the Environment. In D. He & Y. Luo (Eds.), *Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges* (pp. 143-159). Springer International Publishing. https://doi.org/10.1007/978_2020_449

Andrade, A. L. (2017). The plastic in microplastics: A review. *Marine Pollution Bulletin*, 119(1), 12-22. <https://doi.org/10.1016/j.marpolbul.2017.01.082>

Asgharian, B., Hofmann, W., & Miller, F. J. (2001). Mucociliary clearance of insoluble particles from the tracheobronchial airways of the human lung. *Journal of Aerosol Science*, 32(6), 817-832. [https://doi.org/10.1016/S0021-8502\(00\)00121-X](https://doi.org/10.1016/S0021-8502(00)00121-X)

Aslam, I., Qadir, A., & Ahmad, S. R. (2022). A preliminary assessment of microplastics in indoor dust of a developing country in South Asia. *Environmental Monitoring and Assessment*, 194(5), 340.

Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. *Environ Int*, 102, 165-176. <https://doi.org/10.1016/j.envint.2017.02.013>

Aydın, R. B., Yozukmaz, A., Şener, İ., Temiz, F., & Giannetto, D. (2023). Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. *Life*, 13(8), 1686. <https://www.mdpi.com/2075-1729/13/8/1686>

Bahrina, I., Syafei, A. D., Satoto, R., Jiang, J.-J., Nurasin, N. R., Assomadi, A. F., Boedisantoso, R., Hermana, J., & Nasir, M. (2020). An occupant-based overview of microplastics in indoor environments in the City of Surabaya, Indonesia. *Journal of Ecological Engineering*, 21(8), 236-242.

Banaee, M., Soltanian, S., Sureda, A., Gholamhosseini, A., Haghi, B. N., Akhlaghi, M., & Derikvandy, A. (2019). Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (*Cyprinus carpio*). *Chemosphere*, 236, 124335. <https://doi.org/10.1016/j.chemosphere.2019.07.066>

Barboza, L. G. A., Vieira, L. R., Branco, V., Figueiredo, N., Carvalho, F., Carvalho, C., & Guilhermino, L. (2018). Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, *Dicentrarchus labrax* (Linnaeus, 1758). *Aquatic Toxicology*, 195, 49-57. <https://doi.org/10.1016/j.aquatox.2017.12.008>

Bashir, S. M., Kimiko, S., Mak, C.-W., Fang, J. K.-H., & Gonçalves, D. (2021). Personal Care and Cosmetic Products as a Potential Source of Environmental Contamination by Microplastics in a Densely Populated Asian City. *Frontiers*

in *Marine Science*. 8, 683482. <https://doi.org/10.3389/fmars.2021.683482>

Bigalke, M., Fieber, M., Foetisc, A., Reynes, J., & Tollar, P. (2022). Microplastics in agricultural drainage water: A link between terrestrial and aquatic microplastic pollution. *Science of the Total Environment*, 806, 150709. <https://doi.org/10.1016/j.scitotenv.2021.150709>

Bilal, M., Taj, M., Ul Hassan, H., Yaqub, A., Shah, M. I., Sohail, M., Rafiq, N., Atique, U., Abbas, M., Sultana, S., Abdali, U., & Arai, T. (2023). First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan. *Toxics*, 11(7), 612

Botterell, Z. L. R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R. C., & Lindeque, P. K. (2019). Bioavailability and effects of microplastics on marine zooplankton: A review. *Environmental Pollution*, 245, 98-110. <https://doi.org/10.1016/j.envpol.2018.10.065>

Brahney, J., Mahowald, N., Prank, M., Cornwell, G., Klimont, Z., Matsui, H., & Prather, K. A. (2021). Constraining the atmospheric limb of the plastic cycle. *Proc Natl Acad Sci U S A*, 118(16), e2020719118. <https://doi.org/10.1073/pnas.2020719118>

Campanale, C., Galafassi, S., Savino, I., Massarelli, C., Ancona, V., Volta, P., & Uricchio, V. F. (2022). Microplastics pollution in the terrestrial environments: Poorly known diffuse sources and implications for plants. *Science of the Total Environment*, 805, 150431. <https://doi.org/10.1016/j.scitotenv.2021.150431>

Chen, Y., Wang, J., Zhang, Q., Xiang, Z., Li, D., & Han, X. (2017). Microcystin-leucine arginine exhibits immunomodulatory roles in testicular cells resulting in orchitis. *Environmental Pollution*, 229, 964-975. <https://doi.org/10.1016/j.envpol.2017.07.081>

Cheng, W., Zhou, Y., Xie, Y., Li, Y., Zhou, R., Wang, H., Feng, Y. & Wang, Y. (2023). Combined effect of polystyrene microplastics and bis-phenol A on the human embryonic stem cells-derived liver organoids: the hepatotoxicity and lipid accumulation. *The Science of The Total Environment* 854, 158585. <https://doi.org/10.1016/j.scitotenv.2022.158585>

Cheung, L. T. O., Lui, C. Y., & Fok, L. (2018). Microplastic Contamination of Wild and Captive Flathead Grey Mullet (*Mugil cephalus*). *International Journal of Environmental Research and Public Health*, 15(4), 597. <https://www.mdpi.com/1660-4601/15/4/597>

Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human Consumption of Microplastics. *Environmental Science & Technology*, 53(12), 7068-7074. <https://doi.org/10.1021/acs.est.9b01517>

da Costa Araújo, A. P., & Malafaia, G. (2021). Microplastic ingestion induces behavioral disorders in mice: A preliminary study on the trophic transfer effects via tadpoles and fish. *Journal of Hazardous Materials*, 401, 123263. <https://doi.org/10.1016/j.jhazmat.2020.123263>

Danopoulos, E., Twiddy, M., & Rotchell, J. M. (2020). Microplastic contamination of drinking water: A systematic review. *PLOS ONE*, 15(7), e0236838. <https://doi.org/10.1371/journal.pone.0236838>

Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. *Environmental Pollution*, 221, 453-458. <https://doi.org/10.1016/j.envpol.2016.12.013>

Enaud, R., Prevel, R., Ciarlo, E., Beaufils, F., Wieërs, G., Guery, B., & Delhaes, L. (2020). The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. *Front Cell Infect Microbiol*, 10, 9. <https://doi.org/10.3389/fcimb.2020.00009>

Fournier, S. B., D'Errico, J. N., Adler, D. S., Kollontzi, S., Goedken, M. J., Fabris, L., Yurkow, E. J., & Stapleton, P. A. (2020). Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. *Particle and Fibre Toxicology*, 17(1), 55. <https://doi.org/10.1186/s12989-020-00385-9>

Free, C. M., Jensen, O. P., Mason, S. A., Eriksen, M., Williamson, N. J., & Boldgiv, B. (2014). High-levels of microplastic pollution in a large, remote, mountain lake. *Marine Pollution Bulletin*, 85(1), 156-163. <https://doi.org/10.1016/j.marpolbul.2014.06.001>

Furuseth, I. S., & Rødland, E. S. (2020). Reducing the Release of Microplastic from Tire Wear: Nordic Efforts.

Gaston, E., Woo, M., Steele, C., Sukumaran, S., & Anderson, S. (2020). Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. *Applied Spectroscopy*, 74(9), 1079-1098. <https://doi.org/10.1177/0003702820920652>

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. *Sci Adv*, 3(7), e1700782. <https://doi.org/10.1126/sciadv.1700782>

Gouin, T., Avalos, J., Brunning, I., Brzuska, K., De Graaf, J., Kaumanns, J., Koning, T., Meyberg, M., Rettinger, K., & Schlatter, H. (2015). Use of micro-plastic beads in cosmetic products in Europe and their estimated emissions to the North Sea environment. *SOFW J*, 141(4), 40-46.

Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A global perspective on microplastics. *Journal of Geophysical Research: Oceans*, 125(1), e2018JC014719.

Hanun, J. N., Hassan, F., & Jiang, J.-J. (2021). Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process. *Journal of Environmental Chemical Engineering*, 9(5), 106290. <https://doi.org/10.1016/j.jece.2021.106290>

Hernandez, L. M., Yousefi, N., & Tufenkji, N. (2017). Are There Nanoplastics in Your Personal Care Products? *Environmental Science & Technology Letters*, 4(7), 280-285. <https://doi.org/10.1021/acs.estlett.7b00187>

Hong, Y., Wu, S., & Wei, G. (2023). Adverse effects of microplastics and nanoplastics on the reproductive system: A comprehensive review of fertility and potential harmful interactions. *Science of the Total Environment*, 903, 166258. <https://doi.org/10.1016/j.scitotenv.2023.166258>

Hou, J., Lei, Z., Cui, L., Hou, Y., Yang, L., An, R., Wang, Q., Li, S., Zhang, H., & Zhang, L. (2021). Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. *Ecotoxicology and Environmental Safety*, 212, 112012. <https://doi.org/10.1016/j.ecoenv.2021.112012>

Hou, Z., Meng, R., Chen, G., Lai, T., Qing, R., Hao, S., Deng, J., & Wang, B. (2022). Distinct accumulation of nanoplastics in human intestinal organoids. *Science of the Total Environment*, 838, 155811. <https://doi.org/10.1016/j.scitotenv.2022.155811>

Hu, Y., Gong, M., Wang, J., & Bassi, A. (2019). Current research trends on microplastic pollution from wastewater systems: a critical review. *Reviews in Environmental Science and Bio/Technology*, 18(2), 207-230. <https://doi.org/10.1007/s11157-019-09498-w>

Hua, T., Kiran, S., Li, Y., & Sang, Q.-X. A. (2022). Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. *Journal of Hazardous Materials*, 435, 128884. <https://doi.org/10.1016/j.jhazmat.2022.128884>

Issac, M. N., & Kandasubramanian, B. (2021). Effect of microplastics in water and aquatic systems. *Environ Sci Pollut Res Int*, 28(16), 19544-19562. <https://doi.org/10.1007/s11356-021-13184-2>

Jin, H., Ma, T., Sha, X., Liu, Z., Zhou, Y., Meng, X., Chen, Y., Han, X., & Ding, J. (2021). Polystyrene microplastics induced male reproductive toxicity in mice. *Journal of Hazardous Materials*, 401, 123430. <https://doi.org/10.1016/j.jhazmat.2020.123430>

Jin, H., Yang, C., Jiang, C., Li, L., Pan, M., Li, D., Han, X., & Ding, J. (2022). Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. *Environmental Health Perspectives*, 130(10),

107002. <https://doi.org/10.1289/EHP10255>

Jin, Y., Lu, L., Tu, W., Luo, T., & Fu, Z. (2019). Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. *Science of the Total Environment*, 649, 308-317. <https://doi.org/10.1016/j.scitotenv.2018.08.353>

Kacprzak, S., & Tijing, L. D. (2022). Microplastics in indoor environment: sources, mitigation and fate. *Journal of Environmental Chemical Engineering*, 10(2), 107359.

Kallenbach, E. M. F., Rødland, E. S., Buenaventura, N. T., & Hurley, R. (2022). Microplastics in Terrestrial and Freshwater Environments. In M. S. Bank (Ed.), *Microplastic in the Environment: Pattern and Process* (pp. 87-130). Springer International Publishing. https://doi.org/10.1007/978-3-030-78627-4_4

Kang, H.-M., Byeon, E., Jeong, H., Kim, M.-S., Chen, Q., & Lee, J.-S. (2021). Different effects of nano- and microplastics on oxidative status and gut microbiota in the marine medaka *Oryzias melastigma*. *Journal of Hazardous Materials*, 405, 124207. <https://doi.org/10.1016/j.jhazmat.2020.124207>

Karami, A., Golieskardi, A., Keong Choo, C., Larat, V., Galloway, T. S., & Salamatinia, B. (2017). The presence of microplastics in commercial salts from different countries. *Scientific Reports*, 7(1), 46173. <https://doi.org/10.1038/srep46173>

Karbalaei, S., Golieskardi, A., Hamzah, H. B., Abdulwahid, S., Hanachi, P., Walker, T. R., & Karami, A. (2019). Abundance and characteristics of microplastics in commercial marine fish from Malaysia. *Marine Pollution Bulletin*, 148, 5-15. <https://doi.org/10.1016/j.marpolbul.2019.07.072>

Kashfi, F. S., Ramavandi, B., Arfaenia, H., Mohammadi, A., Saeedi, R., De-la-Torre, G. E., & Dobaradaran, S. (2022). Occurrence and exposure assessment of microplastics in indoor dusts of buildings with different applications in Bushehr and Shiraz cities, Iran. *Science of the Total Environment*, 829, 154651. <https://doi.org/10.1016/j.scitotenv.2022.154651>

Kasmuri, N., Tarmizi, N. A. A., & Mojiri, A. (2022). Occurrence, impact, toxicity, and degradation methods of microplastics in environment—a review. *Environmental Science and Pollution Research*, 29(21), 30820-30836. <https://doi.org/10.1007/s11356-021-18268-7>

Kedzierski, M., Lechat, B., Sire, O., Le Maguer, G., Le Tilly, V., & Bruzaud, S. (2020). Microplastic contamination of packaged meat: Occurrence and associated risks. *Food Packaging and Shelf Life*, 24, 100489. <https://doi.org/10.1016/j.fpsl.2020.100489>

Koutnik, V. S., Leonard, J., Alkidim, S., DePrima, F. J., Ravi, S., Hoek, E. M. V., & Mohanty, S. K. (2021). Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling. *Environmental Pollution*, 274, 116552. <https://doi.org/10.1016/j.envpol.2021.116552>

Kutralam-Muniasamy, G., Pérez-Guevara, F., Elizalde-Martínez, I., & Shruti, V. C. (2020). Branded milks – Are they immune from microplastics contamination? *Science of the Total Environment*, 714, 136823. <https://doi.org/10.1016/j.scitotenv.2020.136823>

Laskar, N., & Kumar, U. (2019). Plastics and microplastics: A threat to environment. *Environmental Technology & Innovation*, 14, 100352. <https://doi.org/10.1016/j.eti.2019.100352>

Li, J., Green, C., Reynolds, A., Shi, H., & Rotchell, J. M. (2018). Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. *Environmental Pollution*, 241, 35-44. <https://doi.org/10.1016/j.envpol.2018.05.038>

Li, P., Wang, X., Su, M., Zou, X., Duan, L., & Zhang, H. (2021). Characteristics of Plastic Pollution in the Environment: A Review. *Bull Environ Contam Toxicol*, 107(4), 577-584. <https://doi.org/10.1007/s00128-020-02820-1>

Microplastics in Environmental Setting

Li, Y., Tao, L., Wang, Q., Wang, F., Li, G., & Song, M. (2023). Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. *Environment & Health*, 4, 249–257. <https://doi.org/10.1021/envhealth.3c00052>

Ljung, K., Selinus, O., Otabbong, E., & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. *Applied Geochemistry*, 21(9), 1613-1624. <https://doi.org/10.1016/j.apgeochem.2006.05.005>

Lusher, A., Hollman, P., & Mendoza-Hill, J. (2017). Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO.

Mattsson, K., de Lima, J. A., Wilkinson, T., Järskog, I., Ekstrand, E., Sköld, Y. A., Gustafsson, M., & Hassellöv, M. (2023). Tyre and road wear particles from source to sea. *Microplastics and Nanoplastics*, 3, 14.

Napper, I. E., & Abbott, G. D. (2020). Investigating the sources and pathways of synthetic fibre and vehicle tyre wear contamination into the marine environment. https://plasticheal.dk/media/v2fjnzpp/lr-uk-micro-plastics-14783_executive-summary-me5435-apr-2020-1pdf.pdf

Nematollahi, M. J., Zarei, F., Keshavarzi, B., Zarei, M., Moore, F., Busquets, R., & Kelly, F. J. (2022). Microplastic occurrence in settled indoor dust in schools. *Science of the Total Environment*, 807, 150984.

Niu, H., Liu, S., Jiang, Y., Hu, Y., Li, Y., He, L., Xing, M., Li, X., Wu, L., Chen, Z., Wang, X., & Lou, X. (2023). Are Microplastics Toxic? A Review from Eco-Toxicity to Effects on the Gut Microbiota. *Metabolites*, 13(6), 2658-2677. <https://doi.org/10.3390/metabo13060739>

Park, H., & Park, B. (2021). Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies. *Water*, 13(19), 2736. <https://doi.org/10.3390/w13192736>

Patchaiyappan, A., Dowarah, K., Zaki Ahmed, S., Prabakaran, M., Jayakumar, S., Thirunavukkarasu, C., & Devipriya, S. P. (2021). Prevalence and characteristics of microplastics present in the street dust collected from Chennai metropolitan city, India. *Chemosphere*, 269, 128757. <https://doi.org/10.1016/j.chemosphere.2020.128757>

Peng, C., Zhang, X., Li, M., Lu, Y., Liu, C., & Wang, L. (2023). Source apportionment of microplastics in indoor dust: Two strategies based on shape and composition. *Environmental Pollution*, 334, 122178.

Peng, L., Fu, D., Qi, H., Lan, C. Q., Yu, H., & Ge, C. (2020). Micro- and nano-plastics in marine environment: Source, distribution and threats - A review. *Sci Total Environ*, 698, 134254. <https://doi.org/10.1016/j.scitotenv.2019.134254>

Prata, J. C. (2018). Airborne microplastics: Consequences to human health? *Environmental Pollution*, 234, 115-126. <https://doi.org/10.1016/j.envpol.2017.11.043>

Praveena, S. M., Shamsul Ariffin, N. I., & Nafisyah, A. L. (2022). Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. *Environmental Pollution*, 315, 120494. <https://doi.org/10.1016/j.envpol.2022.120494>

Prüst, M., Meijer, J., & Westerink, R. H. S. (2020). The plastic brain: neurotoxicity of micro- and nanoplastics. *Particle and Fibre Toxicology*, 17(1), 24. <https://doi.org/10.1186/s12989-020-00358-y>

Rahman, A., Sarkar, A., Yadav, O. P., Achari, G., & Slobodnik, J. (2021). Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. *Sci Total Environ*, 757, 143872. <https://doi.org/10.1016/j.scitotenv.2020.143872>

Rillig, M. C., & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. *Science*, 368(6498), 1430-1431. <https://doi.org/10.1126/science.abb5979>

Sa'adu, I., & Farsang, A. (2023). Plastic contamination in agricultural soils: a review. *Environmental Sciences Europe*, 35(1), 13. <https://doi.org/10.1186/s12302-023-00720-9>

Sangkham, S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., Mousazadeh, M., & Tiwari, A. (2022). A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. *Mar Pollut Bull*, 181, 113832. <https://doi.org/10.1016/j.marpolbul.2022.113832>

Schneider, M., Stracke, F., Hansen, S., & Schaefer, U. F. (2009). Nanoparticles and their interactions with the dermal barrier. *Dermato-Endocrinology*, 1(4), 197-206. <https://doi.org/10.4161/derm.1.4.9501>

Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of Various Microplastics in Human Stool. *Annals of Internal Medicine*, 171(7), 453-457. <https://doi.org/10.7326/M19-0618>

Sebille, E. v., Spathi, C., & Gilbert, A. J. (2016). The ocean plastic pollution challenge: towards solutions in the UK.

Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., Megharaj, M., & Fang, C. (2020). Microplastics generated when opening plastic packaging. *Scientific Reports*, 10(1), 4841. <https://doi.org/10.1038/s41598-020-61146-4>

Sridharan, S., Kumar, M., Singh, L., Bolan, N. S., & Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. *Journal of Hazardous Materials*, 418, 126245.

Su, L., Nan, B., Craig, N. J., & Pettigrove, V. (2020). Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: Implications for diffuse pollution. *Chemosphere*, 252, 126567. <https://doi.org/10.1016/j.chemosphere.2020.126567>

Sun, A., & Wang, W.-X. (2023). Human Exposure to Microplastics and Its Associated Health Risks. *Environment & Health* 3, 139-149. <https://doi.org/10.1021/eh3c00053>

Tan, H., Yue, T., Xu, Y., Zhao, J., & Xing, B. (2020). Microplastics Reduce Lipid Digestion in Simulated Human Gastrointestinal System. *Environmental Science & Technology*, 54(19), 12285-12294. <https://doi.org/10.1021/acs.est.0c02608>

Tang, Y., Rong, J., Guan, X., Zha, S., Shi, W., Han, Y., Du, X., Wu, F., Huang, W., & Liu, G. (2020). Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species. *Environmental Pollution*, 258, 113845. <https://doi.org/10.1016/j.envpol.2019.113845>

Thuong, Q.H., Truong, T. N. S., Tran, Q. V., Le, T. M. T., Nguyen, P. D., Emilie, S., & Kieu, L. T. C. (2020). Preliminary assessment on the microplastic contamination in the atmospheric fallout in the Phuoc Hiep landfill, Cu Chi, Ho Chi Minh city. *Vietnam Journal of Science, Technology and Engineering*, 62(3), 83-89. [https://doi.org/10.31276/VJSTE.62\(3\)](https://doi.org/10.31276/VJSTE.62(3))

Tiotiu, A. I., Novakova, P., Nedeva, D., Chong-Neto, H. J., Novakova, S., Steiropoulos, P., & Kowal, K. (2020). Impact of Air Pollution on Asthma Outcomes. *International Journal of Environmental Research and Public Health*, 17(17), 6212. <https://www.mdpi.com/1660-4601/17/17/6212>

Vogelsang, C., Lusher, A. L., Dadkhah, M. E., Sundvor, I., Umar, M., Ranneklev, S. B., Eidsvoll, D. P., & Meland, S. (2019). Microplastics in road dust – characteristics, pathways and measures. <http://hdl.handle.net/11250/2493537>

Wang, J., Tan, Z., Peng, J., Qiu, Q., & Li, M. (2016). The behaviors of microplastics in the marine environment. *Marine Environmental Research*, 113, 7-17. <https://doi.org/10.1016/j.marenvres.2015.10.014>

Wang, T., Zou, X., Li, B., Yao, Y., Zang, Z., Li, Y., Yu, W., & Wang, W. (2019). Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example. *Environmental Pollution*, 245, 965-974. <https://doi.org/10.1016/j.envpol.2018.10.110>

Wang, W., Ndungu, A. W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. *Science of the Total Environment*, 575, 1369-1374.

Microplastics in Environmental Setting

<https://doi.org/10.1016/j.scitotenv.2016.09.213>

Weber, C. J., Hahn, J., & Opp, C. (2022). Spatial Connections between Microplastics and Heavy Metal Pollution within Floodplain Soils. *Applied Sciences*, 12(2), 595. <https://doi.org/10.3390/app12020595>

Winkler, A. S., Cherubini, A., Rusconi, F., Santo, N., Madaschi, L., Pistoni, C., Moschetti, G., Sarnicola, M. L., Crosti, M., Rosso, L., Tremolada, P., Lazzari, L., & Bacchetta, R. (2022). Human airway organoids and microplastic fibers: A new exposure model for emerging contaminants. *Environment International*, 163, 107200. <https://doi.org/10.1016/j.envint.2022.107200>

Wu, P., Lin, S., Cao, G., Wu, J., Jin, H., Wang, C., Wong, M. H., Yang, Z., & Cai, Z. (2022). Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. *Journal of Hazardous Materials*, 437, 129361. <https://doi.org/10.1016/j.jhazmat.2022.129361>

Xie, X., Deng, T., Duan, J., Xie, J., Yuan, J., & Chen, M. (2020). Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. *Ecotoxicology and Environmental Safety*, 190, 110133. <https://doi.org/10.1016/j.ecoenv.2019.110133>

Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., Li, Y., Li, Y., & Zhang, H. (2019). Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. *Science of the Total Environment*, 694, 133794. <https://doi.org/10.1016/j.scitotenv.2019.133794>

Yang, H., He, Y., Yan, Y., Junaid, M., & Wang, J. (2021). Characteristics, Toxic Effects, and Analytical Methods of Microplastics in the Atmosphere. *Nanomaterials (Basel)*, 11(10), 2747. <https://doi.org/10.3390/nano11102747>

Yang, H., Xiong, H., Mi, K., Xue, W., Wei, W., & Zhang, Y. (2020). Toxicity comparison of nano-sized and micron-sized microplastics to Goldfish *Carassius auratus* Larvae. *Journal of Hazardous Materials*, 388, 122058. <https://doi.org/10.1016/j.jhazmat.2020.122058>

Yuan, W., Liu, X., Wang, W., Di, M. & Wang, J. (2019). Microplastic abundance, distribution and composition in water, sediments and wild fish from Poyang Lake, China. *Ecotoxicology and Environmental Safety* 170, 180-187. <https://doi.org/10.1016/j.ecoenv.2018.11.126>

Yuan, Y., Sepúlveda, M. S., Bi, B., Huang, Y., Kong, L., Yan, H., & Gao, Y. (2023). Acute polyethylene microplastic (PE-MPs) exposure activates the intestinal mucosal immune network pathway in adult zebrafish (*Danio rerio*). *Chemosphere*, 311, 137048. <https://doi.org/10.1016/j.chemosphere.2022.137048>

Yuan, Z., Nag, R., & Cummins, E. (2022). Human health concerns regarding microplastics in the aquatic environment - From marine to food systems. *Science of the Total Environment*, 823, 153730. <https://doi.org/10.1016/j.scitotenv.2022.153730>

Zhang, Q., Xu, E. G., Li, J., Chen, Q., Ma, L., Zeng, E. Y., & Shi, H. (2020a). A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. *Environmental Science & Technology*, 54(7), 3740-3751. <https://doi.org/10.1021/acs.est.9b04535>

Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T., & Sillanpää, M. (2020b). Atmospheric microplastics: A review on current status and perspectives. *Earth-Science Reviews*, 203, 103118. <https://doi.org/10.1016/j.earscirev.2020.103118>

Zhu, J., Zhang, X., Liao, K., Wu, P., & Jin, H. (2022). Microplastics in dust from different indoor environments. *Science of the Total Environment*, 833, 155256.

Zhu, X., Huang, W., Fang, M., Liao, Z., Wang, Y., Xu, L., Mu, Q., Shi, C., Lu, C., Deng, H., Dahlgren, R., & Shang, X. (2021). Airborne Microplastic Concentrations in Five Megacities of Northern and Southeast China. *Environmental Science & Technology*, 55(19), 12871-12881. <https://doi.org/10.1021/acs.est.1c03618>